Instructor: Jishnu Biswas

Indian Statistical Institute B.Math.(Hons.) II Year First Semester Back Paper Examination, 2005-2006 Algebra III Time: 3 hrs Date: -12-05 Total Marks : 50

Attempt Qn.1 and any 3 of the other 4 questions (Qn. 2-5)

- 1. State whether the following statements are true or false and justify your answer (quote a relevent theorem or give an argument/counterexample)
 - a) Let $K = Q(\alpha, \beta)$ where $\alpha = \sqrt[4]{5}, \beta = \sqrt[5]{6}$. Then [K:Q] = 20.
 - b) The Galois group of $x^3 3x + 1$ over Q is S_3 .
 - c) Let $F \subseteq L \subseteq K$ be fields with K/F Galois. Then L/F is also Galois.
 - d) $K = \mathbb{F}_2[x]/(x^3 + x + 1)$ is a field. (4×5)
- 2. a) What is the irreducible polynomial of $\sqrt{3} + \sqrt{5}$ over $Q(\sqrt{15})$?

b) Prove that the polynomial $f(x) = x^3 - 3x + 4$ is irreducible over Q. Let α be a root of f(x). Find the inverse of $(\alpha^2 + \alpha + 1)$ in $Q(\alpha)$ explicitly in the form $a + b\alpha + c\alpha^2$ where $a, b, c, \in Q$. (5+5)

3. a) State the Main Theorem of Galois Theory.

b) Let K be the splitting field of $x^3 - 2$ over Q. Write the complete list of intermediate fields of K/Q and the corresponding subgroups of G(K/Q). Which subextensions of K/Q are Galois? (5+5)

- 4. Let $s = e^{2\pi i/5}$ and let K = Q(s). Prove that K is a splitting field of $x^5 1$ over Q and determine the degree [K : Q]. Given an explicit description of the elements of the Galois group G(K/Q) in terms of their action on s. (10)
- 5. a) What is the discriminant of $x^4 + 1$? What is the Galois group of $x^4 + 1$ over Q.

b) Suppose that a real quantic polynomial has a positive discriminant. Prove that it cannot have exactly two real roots. (5+5)